Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 10(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35736886

RESUMO

There is mounting evidence that shows the association between chronic exposure to air pollutants (particulate matter and gaseous) and onset of various respiratory impairments. However, the corresponding toxicological mechanisms of mixed exposure are poorly understood. Therefore, in this study, we aimed to establish a repeated exposure setting for evaluating the pulmonary toxicological effects of diesel exhaust particles (DEP), nitrogen dioxide (NO2), and sulfur dioxide (SO2) as representative criterial air pollutants. Single, combined (DEP with NO2 and SO2), and repeated exposures were performed using physiologically relevant human bronchial mucosa models developed at the air−liquid interface (bro-ALI). The bro-ALI models were generated using human primary bronchial epithelial cells (3−4 donors; 2 replicates per donor). The exposure regime included the following: 1. DEP (12.5 µg/cm2; 3 min/day, 3 days); 2. low gaseous (NO2: 0.1 ppm + SO2: 0.2 ppm); (30 min/day, 3 days); 3. high gaseous (NO2: 0.2 ppm + SO2: 0.4 ppm) (30 min/day, 3 days); and 4. single combined (DEP + low gaseous for 1 day). The markers for pro-inflammatory (IL8, IL6, NFKB, TNF), oxidative stress (HMOX1, GSTA1, SOD3,) and tissue injury/repair (MMP9, TIMP1) responses were assessed at transcriptional and/ or secreted protein levels following exposure. The corresponding sham-exposed samples under identical conditions served as the control. A non-parametric statistical analysis was performed and p < 0.05 was considered as significant. Repeated exposure to DEP and single combined (DEP + low gaseous) exposure showed significant alteration in the pro-inflammatory, oxidative stress and tissue injury responses compared to repeated exposures to gaseous air pollutants. The study demonstrates that it is feasible to predict the long-term effects of air pollutants using the above explained exposure system.

2.
Regul Toxicol Pharmacol ; 132: 105193, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618173

RESUMO

The carcinogenicity and developmental toxicity of unrefined mineral oil is related to its 3-7 ring polycyclic aromatic compounds (PAC) content. Therefore, refining operations focus on the targeted removal PAC from mineral oil that may contain aromatics of low toxicological concern. There are thus, two types of aromatic substances in mineral oil: hazardous and non-hazardous. The first type consists of 3-7 ring PAC which may be naked (unsubstituted) or lowly alkylated. The second type or non-hazardous consists of 1-7 ring aromatics with high degree of alkylation or lack of bay or fjord regions. Although these are toxicologically different, they may both elute in the same fraction when using chromatography. To understand how these two aromatic types are related we have assessed the entire mineral oil refinement process by measuring total mineral oil aromatic hydrocarbons (MOAH) content by chromatography next to regulatory hazard tests which focus on 3-7 ring PAC. MOAH content is positively correlated to its molecular weight resulting in aromatic content bias for high viscosity substances. Hazard to 3-7 ring PAC is best controlled by the validated IP346 or modified Ames test. We explain the concept of high vs low alkylation by shortly reviewing new data on alkylated PAC.


Assuntos
Hidrocarbonetos Aromáticos , Compostos Policíclicos , Carcinogênese , Carcinógenos/toxicidade , Humanos , Hidrocarbonetos Aromáticos/análise , Óleo Mineral/química , Óleo Mineral/toxicidade , Minerais , Óleos
3.
Reprod Toxicol ; 102: 67-79, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781938

RESUMO

The prenatal developmental toxicity of the fumes of oxidised asphalt (OA) was tested by nose-only inhalation in the rat. The test material was generated by collecting fumes from the headspace of storage tanks filled with OA. The composition of these fumes was matched to fumes sampled at a workplace where the same OA was applied in a pour-and-roll operation, representing occupational exposure with high concentrations of fumes to not underestimate the possible hazard. In the main study, dams were exposed to 0, 53, 158 and 536 mg/m3 of fume (as total organic mass), for 6 h/day for 19 days p.c. The maternal NOAEC was 53 mg/m³ (lowest dose tested). In the high-dose group treatment-related effects on body weight gain were seen. In the mid- and high-dose groups treatment-related effects on food consumption, lung weights, and histopathological changes in lungs and the upper respiratory tract were observed. The NOAEC for prenatal developmental toxicity was 536 mg/m³ since no exposure-related effects were found in any of the exposure groups for any of the investigated reproductive endpoints. Furthermore, nose-only exposure to OA fumes in concentrations up to 536 mg/m³ from days 1-19 p.c. did not induce any significant fetal abnormalities.


Assuntos
Hidrocarbonetos/toxicidade , Exposição por Inalação , Animais , Feminino , Pulmão , Masculino , Exposição Ocupacional , Gravidez , Ratos , Reprodução
4.
Reprod Toxicol ; 99: 15-26, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249228

RESUMO

The prenatal developmental toxicity of bitumen fume was tested by nose-only inhalation in the rat. The fumes for exposure were collected from the headspace of a storage tank filled with a bitumen corresponding in composition to an anticipated worst-case occupational exposure. The composition of these fumes was compared to actual paving site fumes to ensure its representativeness for workplace exposures. In a dose-range-finding study male and female rats were exposed to 0, 103, 480 or 1043 mg/m3 of fume (as total organic mass), for 6 h/day during 20 days post conception (p.c.). Dose-related effects on body weight and lungs were observed in the mid- and high-dose groups. In the main study, dams were exposed to 0, 52, 151 and 482 mg/m3 of fume, for 6 h/day during 19 days p.c. The maternal NOAEL was 52 mg/m³. In the high-dose group treatment-related effects on body weight (gain), food consumption, lung weights, and histopathological changes in lungs and larynx were observed. In the mid-dose group only histopathological changes in the larynx and lungs were found. The NOAEL for prenatal developmental toxicity was 151 mg/m³ based on reduced fetal weight in the high-dose group (482 mg/m³). However, these changes are most likely a consequence of the maternal toxicity, in particular the reduction of maternal body weight gain by 26 % as compared to control. Nose-only exposure to bitumen fumes in concentrations up to 482 mg/m³ from days 1-19 p.c. did not induce any significant fetal anomalies.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Hidrocarbonetos/toxicidade , Administração por Inalação , Aerossóis/análise , Aerossóis/toxicidade , Poluentes Ocupacionais do Ar/análise , Animais , Peso Corporal/efeitos dos fármacos , Monitoramento Ambiental , Feminino , Feto/efeitos dos fármacos , Humanos , Hidrocarbonetos/análise , Exposição por Inalação/análise , Laringe/efeitos dos fármacos , Laringe/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Troca Materno-Fetal , Nível de Efeito Adverso não Observado , Exposição Ocupacional/análise , Gravidez , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...